Golden
Risk Analysis of Flowlines in the Oil and Gas Sector: A GIS and Machine Learning Approach
Chittumuri, I., Alshehab, N., Voss, R. J., Douglass, L. L., Kamrava, S., Fan, Y., Miskimins, J., Fleckenstein, W., Bandyopadhyay, S.
This paper presents a risk analysis of flowlines in the oil and gas sector using Geographic Information Systems (GIS) and machine learning (ML). Flowlines, vital conduits transporting oil, gas, and water from wellheads to surface facilities, often face under-assessment compared to transmission pipelines. This study addresses this gap using advanced tools to predict and mitigate failures, improving environmental safety and reducing human exposure. Extensive datasets from the Colorado Energy and Carbon Management Commission (ECMC) were processed through spatial matching, feature engineering, and geometric extraction to build robust predictive models. Various ML algorithms, including logistic regression, support vector machines, gradient boosting decision trees, and K-Means clustering, were used to assess and classify risks, with ensemble classifiers showing superior accuracy, especially when paired with Principal Component Analysis (PCA) for dimensionality reduction. Finally, a thorough data analysis highlighted spatial and operational factors influencing risks, identifying high-risk zones for focused monitoring. Overall, the study demonstrates the transformative potential of integrating GIS and ML in flowline risk management, proposing a data-driven approach that emphasizes the need for accurate data and refined models to improve safety in petroleum extraction.
Toward RAPS: the Robot Autonomy Perception Scale
Silva, Rafael Sousa, Smith, Cailyn, Bezerra, Lara, Williams, Tom
Human-robot interactions can change significantly depending on how autonomous humans perceive a robot to be. Yet, while previous work in the HRI community measured perceptions of human autonomy, there is little work on measuring perceptions of robot autonomy. In this paper, we present our progress toward the creation of the Robot Autonomy Perception Scale (RAPS): a theoretically motivated scale for measuring human perceptions of robot autonomy. We formulated a set of fifteen Likert scale items that are based on the definition of autonomy from Beer et al.'s work, which identifies five key autonomy components: ability to sense, ability to plan, ability to act, ability to act with an intent towards some goal, and an ability to do so without external control. We applied RAPS to an experimental context in which a robot communicated with a human teammate through different levels of Performative Autonomy (PA): an autonomy-driven strategy in which robots may "perform" a lower level of autonomy than they are truly capable of to increase human situational awareness. Our results present preliminary validation for RAPS by demonstrating its sensitivity to PA and motivate the further validation of RAPS.
Exposure Conscious Path Planning for Equal Exposure Corridors
Hamzezadeh, Eugene T., Rogers, John G., Dantam, Neil T., Petruska, Andrew J.
Personal use of this material is permitted. Abstract-- While maximizing line-of-sight coverage of specific regions or agents in the environment is a well-explored path planning objective, the converse problem of minimizing exposure to the entire environment during navigation is especially interesting in the context of minimizing detection risk. This work demonstrates that minimizing line-of-sight exposure to the environment is non-Markovian, which cannot be efficiently solved optimally with traditional path planning. The optimality gap of the graph-search algorithm A* and the trade-offs Figure 1: When delivering a package the robot should take the solid in optimality vs. computation time of several approximating black line route over the dashed red one, so as to minimize the heuristics is explored. Finally, the concept of equal-exposure likelihood of being seen by a malicious agent.
An Automated Machine Learning Approach to Inkjet Printed Component Analysis: A Step Toward Smart Additive Manufacturing
Sahu, Abhishek, Aaen, Peter H., Damacharla, Praveen
In this paper, we present a machine learning based architecture for microwave characterization of inkjet printed components on flexible substrates. Our proposed architecture uses several machine learning algorithms and automatically selects the best algorithm to extract the material parameters (ink conductivity and dielectric properties) from on-wafer measurements. Initially, the mutual dependence between material parameters of the inkjet printed coplanar waveguides (CPWs) and EM-simulated propagation constants is utilized to train the machine learning models. Next, these machine learning models along with measured propagation constants are used to extract the ink conductivity and dielectric properties of the test prototypes. To demonstrate the applicability of our proposed approach, we compare and contrast four heuristic based machine learning models. It is shown that eXtreme Gradient Boosted Trees Regressor (XGB) and Light Gradient Boosting (LGB) algorithms perform best for the characterization problem under study.
Short-Term Solar Irradiance Forecasting Under Data Transmission Constraints
Hammond, Joshua Edward, Orozco, Ricardo A. Lara, Baldea, Michael, Korgel, Brian A.
We report a data-parsimonious machine learning model for short-term forecasting of solar irradiance. The model inputs include sky camera images that are reduced to scalar features to meet data transmission constraints. The output irradiance values are transformed to focus on unknown short-term dynamics. Inspired by control theory, a noise input is used to reflect unmeasured variables and is shown to improve model predictions, often considerably. Five years of data from the NREL Solar Radiation Research Laboratory were used to create three rolling train-validate sets and determine the best representations for time, the optimal span of input measurements, and the most impactful model input data (features). For the chosen test data, the model achieves a mean absolute error of 74.34 $W/m^2$ compared to a baseline 134.35 $W/m^2$ using the persistence of cloudiness model.
Ensemble flow reconstruction in the atmospheric boundary layer from spatially limited measurements through latent diffusion models
Rybchuk, Alex, Hassanaly, Malik, Hamilton, Nicholas, Doubrawa, Paula, Fulton, Mitchell J., Martรญnez-Tossas, Luis A.
Due to costs and practical constraints, field campaigns in the atmospheric boundary layer typically only measure a fraction of the atmospheric volume of interest. Machine learning techniques have previously successfully reconstructed unobserved regions of flow in canonical fluid mechanics problems and two-dimensional geophysical flows, but these techniques have not yet been demonstrated in the three-dimensional atmospheric boundary layer. Here, we conduct a numerical analogue of a field campaign with spatially limited measurements using large-eddy simulation. We pose flow reconstruction as an inpainting problem, and reconstruct realistic samples of turbulent, three-dimensional flow with the use of a latent diffusion model. The diffusion model generates physically plausible turbulent structures on larger spatial scales, even when input observations cover less than 1% of the volume. Through a combination of qualitative visualization and quantitative assessment, we demonstrate that the diffusion model generates meaningfully diverse samples when conditioned on just one observation. These samples successfully serve as initial conditions for a large-eddy simulation code. We find that diffusion models show promise and potential for other applications for other turbulent flow reconstruction problems.
Building Open Knowledge Graph for Metal-Organic Frameworks (MOF-KG): Challenges and Case Studies
An, Yuan, Greenberg, Jane, Zhao, Xintong, Hu, Xiaohua, McCLellan, Scott, Kalinowski, Alex, Uribe-Romo, Fernando J., Langlois, Kyle, Furst, Jacob, Gรณmez-Gualdrรณn, Diego A., Fajardo-Rojas, Fernando, Ardila, Katherine
Metal-Organic Frameworks (MOFs) are a class of modular, porous crystalline materials that have great potential to revolutionize applications such as gas storage, molecular separations, chemical sensing, catalysis, and drug delivery. The Cambridge Structural Database (CSD) reports 10,636 synthesized MOF crystals which in addition contains ca. 114,373 MOF-like structures. The sheer number of synthesized (plus potentially synthesizable) MOF structures requires researchers pursue computational techniques to screen and isolate MOF candidates. In this demo paper, we describe our effort on leveraging knowledge graph methods to facilitate MOF prediction, discovery, and synthesis. We present challenges and case studies about (1) construction of a MOF knowledge graph (MOF-KG) from structured and unstructured sources and (2) leveraging the MOF-KG for discovery of new or missing knowledge.
Asynchronous Collaborative Localization by Integrating Spatiotemporal Graph Learning with Model-Based Estimation
Gao, Peng, Reily, Brian, Guo, Rui, Lu, Hongsheng, Zhu, Qingzhao, Zhang, Hao
Collaborative localization is an essential capability for a team of robots such as connected vehicles to collaboratively estimate object locations from multiple perspectives with reliant cooperation. To enable collaborative localization, four key challenges must be addressed, including modeling complex relationships between observed objects, fusing observations from an arbitrary number of collaborating robots, quantifying localization uncertainty, and addressing latency of robot communications. In this paper, we introduce a novel approach that integrates uncertainty-aware spatiotemporal graph learning and model-based state estimation for a team of robots to collaboratively localize objects. Specifically, we introduce a new uncertainty-aware graph learning model that learns spatiotemporal graphs to represent historical motions of the objects observed by each robot over time and provides uncertainties in object localization. Moreover, we propose a novel method for integrated learning and model-based state estimation, which fuses asynchronous observations obtained from an arbitrary number of robots for collaborative localization. We evaluate our approach in two collaborative object localization scenarios in simulations and on real robots. Experimental results show that our approach outperforms previous methods and achieves state-of-the-art performance on asynchronous collaborative localization.
Comprehensive process-molten pool relations modeling using CNN for wire-feed laser additive manufacturing
Jamnikar, Noopur, Liu, Sen, Brice, Craig, Zhang, Xiaoli
Wire-feed laser additive manufacturing (WLAM) is gaining wide interest due to its high level of automation, high deposition rates, and good quality of printed parts. In-process monitoring and feedback controls that would reduce the uncertainty in the quality of the material are in the early stages of development. Machine learning promises the ability to accelerate the adoption of new processes and property design in additive manufacturing by making process-structure-property connections between process setting inputs and material quality outcomes. The molten pool dimensional information and temperature are the indicators for achieving the high quality of the build, which can be directly controlled by processing parameters. For the purpose of in situ quality control, the process parameters should be controlled in real-time based on sensed information from the process, in particular the molten pool. Thus, the molten pool-process relations are of preliminary importance. This paper analyzes experimentally collected in situ sensing data from the molten pool under a set of controlled process parameters in a WLAM system. The variations in the steady-state and transient state of the molten pool are presented with respect to the change of independent process parameters. A multi-modality convolutional neural network (CNN) architecture is proposed for predicting the control parameter directly from the measurable molten pool sensor data for achieving desired geometric and microstructural properties. Dropout and regularization are applied to the CNN architecture to avoid the problem of overfitting. The results highlighted that the multi-modal CNN, which receives temperature profile as an external feature to the features extracted from the image data, has improved prediction performance compared to the image-based uni-modality CNN approach.